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The site percolation transition in random Sierpin´ski carpets is investigated by real space renormalization.
The fixed point is not unique like in regular translationally invariant lattices, but depends on the numberk of
segmentation steps of the generation process of the fractal. It is shown that, for each scale invariance ratio
n, the sequence of fixed pointspn,k is increasing withk, and converges whenk→` toward a limitpn strictly
less than 1. Moreover, in such scale invariant structures, the percolation threshold does not depend only on the
scale invariance ration, but also on the scale. The sequencepn,k andpn are calculated forn54, 8, 16, 32, and
64, and fork51 to k511, andk5`. The corresponding thermal exponent sequencenn,k is calculated for
n58 and 16, and fork51 to k55, andk5`. Suggestions are made for an experimental test in physical
self-similar structures.@S1063-651X~96!04510-2#

PACS number~s!: 64.60.Ak, 61.43.Hv

I. INTRODUCTION

Phase transitions in fractals are of special interest since
they are structures of noninteger dimension in which the
critical behavior can be compared with the analytical con-
tinuations obtained from the renormalization group methods.

Transitions in finite ramification order fractals~i.e., in
which any bounded part of the structure can be isolated by
cutting a finite number of bonds! have been extensively stud-
ied. Gefen, Aharony, and Mandelbrot@1# proved in this case
that transitions occur only at zero temperature. Then the Si-
erpiński gasket model~triangular self-invariant fractal! has
been solved exactly for the Potts model, the Ising model,
percolation, and electric conductance~Gefen et al. @2#!.
More recently, Yang@4# found an exact expression for the
partition function of the Ising model on some Sierpin´ski car-
pets with finite ramification order.

However, few results are known on infinite ramification
order fractal lattices, those in which transitions can occur at a
nonzero temperature. Gefen, Aharony, and Mandelbrot@3#
found some approximations for the critical exponents in
Sierpiński carpets of various fractal dimension, for the Ising
model, and the conductivity transition, using real space
renormalization methods. It appears that the critical expo-
nents depend not only on the fractal dimension, but also on
other geometrical parameters like lacunarity and connectiv-
ity. Thus the self-invariant lattices do not follow the univer-
sal behavior observed in translationally invariant lattices.

Interesting questions arise from these works:~i! what is
the role of the fractal dimension in the phase transition?~ii !
What are the relevant parameters and what are their physical
meaning?~iii ! How does the renormalization group work
when translation invariance is replaced by scale invariance?

This paper is a contribution to these questions. We inves-
tigate one of the most simple second order phase transition:
the percolation transition, in a general class of fractals: the
random Sierpin´ski carpets~RSC! ~defined later! using a real
space renormalization group method.

Percolation is a geometrical second order phase transition
occurring in random lacunary media. Considering a set of

elements randomly distributed on the sites of a lattice, the
percolation transition is the property of these elements to
become connected in a cluster of infinite size when their
concentration is large enough. The concentration at which
such connections occur is called the percolation threshold.
The real space renormalization group has been extensively
used to study the critical properties of the percolation transi-
tion in regular~i.e., translationally invariant! lattices, leading
to the successful calculation of several physical characteris-
tics of lacunary materials, such as their dielectric functions
@5#. Few works, however, have been devoted to the percola-
tion transition in random fractals which are a special class of
lacunary lattices frequently used as models for disordered
materials.

Random Sierpin´ski carpets~RSC! are a general class of
regular-random fractals@7# generated by a segmentation pro-
cess like the well known Sierpin´ski carpet, but generalized to
any scale invariance ration and to a random choice ofq
conserved subsquares among then2 generated at each seg-
mentation step. They are diluted fractal lattices quite differ-
ent from the diluted regular square lattice. Indeed many con-
figurations which occur into the diluted square lattice do not
exist in a scale invariant fractal structure with the same con-
centration. We thus expect a quite different behavior of the
percolation parameters, as already suggested by previous
works @6#.

Here, the critical properties of the percolation transition
into RSC are investigated with a real space renormalization
group method. More generally, this paper brings some new
insights about the relation between renormalization group
and fractality, both involving scale invariance, but with a
different point of view. From the combination of these two
related but somewhat different aspects of the scale invariance
rise some interesting percolation properties of scale invariant
fractal structures which should find experimental applica-
tions as suggested in the conclusion.

II. THE FRACTAL STRUCTURES

RSC are built as follows. An initial square is divided into
n2 subsquares, onlyq of them are conserved at random. This
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random segmentation is repeated on each conserved sub-
squares, and so on,k times (k is the segmentation step!.
Such a set is called RSC(n,q,k). The rigorous mathematical
fractal is obtained after an infinite number of segmentation
stepsk. However, it can be observed in most ‘‘natural’’ frac-
tals that the physical consequences of scale invariance appear
with a small number of segmentation steps. Figure 1 shows
two examples: RSC~4,11,3! ~fractal dimensiondf51,73) and
RSC~8,45,2! (df51,83). The concentration of occupied sites
at stepk is (q/n2)k and tends to 0 for increasing values of
k. This is a typical consequence of scale invariance, and a
proof that for such fractals, the concentration cannot be used
as a control parameter for the percolation transition. We will
use instead (q/n2)k, the concentration at the first segmenta-
tion step,p5q/n2 here called the ‘‘initial concentration’’ of
RSC(n,q,k), which seems to be a better control parameter.

III. THE RENORMALIZATION PROCESS

The renormalization process is the one used previously to
calculate the critical parameters of site percolation in regular
lattices@8#. It corresponds to the ‘‘one cell approximation’’
@10, 11#. The cells are blocks of four sites. Seven configura-
tions are distinguished for each cell, as shown in Fig. 2,
according to the fact that sites are occupied~black squares!
or empty~white squares!. The renormalization rules are the
following: four occupied squares~configuration g!, three oc-
cupied squares~configuration f! and two occupied squares
only if aligned on an arbitrary choosen direction~here verti-
cal! give an occupied site. All other configurations~a, b, c, d!
give an empty site in the renormalized lattice.

FIG. 1. Two examples of random Sierpin´ski carpets:~a! RSC(4,11,3) (df51,73) and~b! RSC(8,45,2) (df51,83).

FIG. 2. The seven configurations of a four sites cell. Black
squares are occupied sites and white squares are empty sites.

FIG. 3. Plot of the concentrations sequences of the renormalized
regular lacunary square lattice of 4096 sites, vs the initial concen-
tration p5q/4096. j is the renormalization step.
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In lattices of finite size~finite number of segmentation
steps for RSC!, no infinite percolation cluster can exist. A
physical way to analyze the percolation transition is to look
for a continuous path between two arbitrarily choosen oppo-
site sides of the lattice@8#. This explains the symmetry
breaking involved by the distinction between horizontal lines
and vertical lines in the renormalization process~configura-
tions d and e in Fig. 2!.

In the infinite regular lacunary square lattice, the renor-
malization functionf is easily calculated. Let us callp the
concentration. The fractions of the three percolating cells~e,
f, and g, in Fig. 2!, obtained after one renormalization step
are, respectively:p2(12p)2, p3(12p), andp4. Taking into
account the number of occurrences of each cell: two for e,
four for f, and one for g, the renormalized concentration after
one step, isf(p)5p2(22p2). The fixed point of this renor-
malization function is an estimation of the percolation
thresholdpc . It is the nontrivial and positive solution of the
equation: p2(22p2)2p50, that is pc5(A521)/2
50.618 034. This result is a reasonably good approximation
of the percolation threshold of the square lattice obtained by
Monte Carlo simulations:pc.0.59 @9#.

IV. NUMERICAL SIMULATIONS

In the regular lacunary square lattice, successive applica-
tions of the renormalization described above on a 64364
lattice give a set of six curves as shown in Fig. 3 (j is the
renormalization step!. All curves intersect at the fixed point
of the renormalization group transformation, corresponding
to pc ~neglecting the finite size effects!.

For RSC(n,q,k), the same renormalization process is ap-
plied on structures with a scale invariance ration which is a
power of 2:n52i in order to get, at each renormalization
step, an even number of sites near each edge of the lattice.
The total number of renormalization steps isk3 i . The case
k51 corresponds exactly to the percolation problem on the
regular square lattice of sizen2.

Results are shown in Fig. 4 for RSC(8,q,4), and Fig. 5 for
RSC(16,q,3). The sequences of concentrations obtained by
iterations of the renormalization process are plotted versus
the initial concentration (j is the renormalization step!. The
renormalized concentrations are averaged over 200 randomly
choosen structures for RSC(8,q,4), and 500 for RSC
(16,q,3) to avoid fluctuations effects. It appears that, com-
pared to the lacunary square lattice, there is not a unique
fixed point, but a sequence of fixed points, depending on the
segmentation step of the fractals. The main result is that the
percolation threshold depends on the scale at which the frac-
tal is observed.

FIG. 4. Plot of the concentrations sequences of the renormalized
lattices vs the initial concentrationp5q/64, for RSC(8,q,4), show-
ing the four fixed points.j is the renormalization step.

FIG. 5. Plot of the concentrations sequences of the renormalized
lattices vs the initial concentrationp5q/256, for RSC(16,q,3),
showing the three fixed points.j is the renormalization step.

FIG. 6. Plot of the renormalized concentrations sequences
c l(p) (1< l<k3 i512) vs the initial concentrationp5q/64, for
RSC(8,q,4) ~to be compared to numerical results of Fig. 4!.

FIG. 7. Plot of the renormalized concentrations sequences
c l(p) (1< l<k3 i512) vs the initial concentrationp5q/256, for
RSC(16,q,3) ~to be compared to numerical results of Fig. 5!.
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Three other important observations arise from these nu-
merical simulations.~i! The number of fixed points is exactly
equal to the numberk of segmentation steps;~ii ! each fixed
point is the intersection of the same numberi11 of renor-
malization curves; ~iii ! the first k fixed points of
RSC(n,q,k11) are the same as thek fixed points of
RSC(n,q,k), i.e., increasing the number of segmentation
steps only adds new fixed points without changing the values
of the preceding ones.

V. ANALYTICAL CALCULATIONS

The calculation of the renormalized concentrations at
each step of renormalization can be performed in the follow-
ing way. The important fact is that we have choosen values
of n such that the size of the lattice is a multiple of two at
each renormalization step (n52i). As RSC(n,q,1) ~with
only one step of segmentation! is the same structure as a
random lacunary square lattice with sizen2 with a concen-
tration p5q/n2, RSC(n,q,k) can be considered as a set of
q2(k21) lacunary square lattices each with concentration
q/n2. As n52i , the renormalization occurs independently
into the q2(k21) random lacunary square lattices up to the
i th step of renormalization, byi successive applications of
the renormalization functionf. Let us callf j the j th iterate
of the functionf, andc j (p) the function giving the concen-
tration at thej th step of iteration of the renormalization pro-
cess. Starting with the concentrationc0(p)5pk5(q/n2)k,
the i first renormalization steps give the following sequence
of renormalized concentrations:

c0~p!5pk,

c1~p!5p~k21!f~p!,

c2~p!5p~k21!f2~p!, ~5.1!

.......... ...... ..........

c i~p!5p~k21!f i~p!.

At this step, the renormalized structure obtained is a set of
q2(k21) squares, each with the renormalized concentration
f i(p). It can be considered as a set ofq2(k22) random la-
cunary square lattices of sizen2, each with concentration
p3f i(p). Thei next renormalization steps are then obtained
by action of the renormalization functionf, appliedi times
on this concentrationp3f i(p) giving

c~ i11!~p!5p~k22!f@pf i~p!#,

c~ i12!~p!5p~k22!f2@pf i~p!#,
~5.2!

.......... ...... .......... ,

c2i~p!5p~k22!f i@pf i~p!#.

This sequence ofi renormalization steps corresponds to the
renormalization of one full fractal segmentation step. Then
such a sequence is iterated as many times as the total number
k of segmentation steps of the fractal. Let us define the func-
tion gn, j (p) by

gn,0~p!5p, and gn, j11~p!5pf i@gn, j~p!# ~5.3!

the j th iteration (1< j,k) of this sequence ofi renormal-
ization steps givesi more successive renormalized concen-
trations as follows:

FIG. 8. Plot of the fixed pointspn,k of RSC(n,q,k) vs n, for
k<1<11 andk5`.

FIG. 9. Plot of the concentrationspn,k
k of RSC(n,q,k) at the

percolation thresholdspn,k of RSC(n,q,k) vs n, for k<1<9.

TABLE I. The fixed pointspn,k of RSC(n,q,k), for 4<n<64, and fork<2<11 andk5`.

k52 k53 k54 k55 k56 k57 k58 k59 k510 k511 k5`

p4,k 0.729 21 0.772 09 0.794 39 0.807 81 0.816 62 0.822 76 0.827 23 0.8306 0.8332 0.835 25 0.848
p8,k 0.705 27 0.737 69 0.754 06 0.763 65 0.7698 0.773 99 0.776 99 0.779 21 0.7809 0.782 22 0.7899
n16,k 0.685 06 0.708 78 0.720 37 0.726 99 0.731 16 0.733 95 0.735 92 0.737 36 0.738 44 0.739 28 0.744
p32,k 0.668 59 0.6855 0.6935 0.697 97 0.700 74 0.702 57 0.703 84 0.704 77 0.705 46 0.706 0.708 92
p64,k 0.655 55 0.667 37 0.6728 0.675 77 0.677 58 0.678 77 0.6796 0.680 19 0.682 79
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c [ ~ j21!i11]~p!5p~k2 j11!f@gn, j21~p!#,

c [ ~ j21!i12]~p!5p~k2 j11!f2@gn, j21~p!#,
~5.4!

.......... ...... .......... ,

c j i ~p!5p~k2 j !gn, j~p!

and the final renormalized concentration, obtained after
k3 i renormalization steps is

cki~p!5f i@gn,k21~p!#. ~5.5!

Then, the full renormalization of RSC(n,q,k) is divided into
k sequences ofi renormalization steps. One sequence corre-
sponds to the full renormalization of one fractal segmenta-
tion step, which is similar to that ofq independant regular
square lattices. This result explains the three features ob-
served in the numerical simulations:~i! we clearly obtaink
successive fixed points, corresponding to the renormalization
of each segmentation step of the fractal;~ii ! the j th fixed
point (1< j<k) is the intersection of thei11 following
functions:c ( j21)i , c ( j21)i11, c ( j21)i12, . . .c j i . Then, each
fixed point involves exactlyi11 renormalization steps;~iii !
the values of the fixed points are not changed whenk in-
creases, only new points are added.

For comparison to the numerical simulations, Figs. 6 and
7 show the curves obtained for the same cases as Figs. 4 and
5, respectively, i.e., RSC(8,q,4) and RSC(16,q,3). Theoreti-
cal and numerical results are in good agreement. Only a
slight discrepancy shows up, due to finite size effects. The
functionf is indeed calculated in the limitn→`, and used
in the previous examples for finite values ofn: 8 and 16.

The sequence of fixed pointspn,k is increasing withk.
Thekth fixed pointpn,k can be considered as the percolation
threshold of RSC(n,q,k), and is calculated as follows. It is
the real solution between 0 and 1 of the equation

c~k21!i~p!5c~k21!i11~p! or gn,~k21!~p!5pc. ~5.6!

When k→`, gn,k converges towards a limitgn and pn,k
towards a limitpn strictly less than 1, which can be consid-
ered as the percolation threshold of RSC(n,q,`) ~indepen-
dent of any segmentation stepk). These percolation thresh-
oldspn are calculated as follows. From the recurrence 5.3 on
gn,k , gn obeys the equation

gn~p!5pf i@gn~p!# ~5.7!

for n52 (i51), the threshold is exactly calculated

p25
3

4 S 32D
1/2

. ~5.8!

However, for such a small value ofn, the finite size effects
are too strong to allow any comparison with numerical simu-
lations. For higher values ofn, the degrees of the equations
are higher than four and the thresholds are calculated nu-
merically. Table I contains the values ofpn,k for 1< i<6
(4<n<64) and 2<k<11, andk5`. For k51, all fixed
points are equal topc5(A521)/2, since finite size effects
are neglected.

Figure 8 shows a plot ofpn,k , and pn versusn for
2< i<6 (2<n<64) and 2<k<11 andk5`. It results from
the calculation ofpn,k and pn that both converges towards
pc , the percolation threshold of the lacunary square lattice,
whenn→` as expected from physical reasons.

An estimate of the thermal exponentnn,k which charac-
terizes the behavior of the correlation lengthj at large scale:
j;(p2pc)

2n is obtained by linearization of the renormal-
ization function near the fixed points
n5 ln(2)/ln(df/dp/p5pc

). In the fractal case, the result is a
sequence of thermal exponents depending on the segmenta-
tion step orderk ~i.e., on the scale!

nn,k5
ln~2!

lnS df

dp/p5pn,kD
. ~5.9!

The results forn58 andn516 are shown in Table II. The
sequencenn,k increases withk, decreases withn, and con-
verges, whenn→`, towards 1.635 28, the value of the ex-
ponentn obtained by renormalization of the infinite regular
lacunary square lattice.

VI. CONCLUSION AND PROSPECTS

The main result of this work is that, in self-similar struc-
tures, the percolation threshold may depend on the scale of
observation. We suggest an experimental check, in ‘‘natu-
ral’’ self-similar fractals of this scale dependence of the per-
colation threshold. A classic test of percolation is to check
whether or not a liquid can go through a porous media. A
simple liquid has no particular scale~except at the molecular
size, which is not our aim!, but it is possible to give it a scale
by putting in suspension particules of a calibrated size. We
expect that, in a self-invariant structure, and when the size of
the particules decreases, more and more holes are available,
so that it is more and more easy to percolate. Then the con-
centration of the fractal at the percolation threshold, and at
the corresponding scale~i.e., the corresponding size! should
also decrease.

This is in good agreement with our theoretical results.
This clearly appears on the plot of the concentrations of RSC
at the percolation thresholds versus the scale invariance ratio
n and the scalek in Fig. 9 ~in our case, the occupied sites of
our model corresponds to the holes of the porous media!.

The physical applications of such flows of solid particles
immersed in a fluid are numerous in industry, in the fields of
filtration, chromatography, clogging, and blood circulation.

ACKNOWLEDGMENTS

We thank J. L. Motchane and C. Aslangul for useful sug-
gestions and interesting discussions.

TABLE II. The thermal exponentnn,k of RSC(n,q,k), for
n58, andn516, andk<2<5 andk5`.

k52 k53 k54 k55 k5`

n8,k 1.985 26 2.338 65 2.6328 2.869 04 4.019 49
n16,k 1.851 01 2.013 89 2.122 65 2.196 45 2.439 01
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