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Percolation in random-Sierpinski carpets: A real space renormalization group approach
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The site percolation transition in random Siéskincarpets is investigated by real space renormalization.
The fixed point is not unique like in regular translationally invariant lattices, but depends on the nuwiber
segmentation steps of the generation process of the fractal. It is shown that, for each scale invariance ratio
n, the sequence of fixed poings , is increasing withk, and converges whe— < toward a limitp, strictly
less than 1. Moreover, in such scale invariant structures, the percolation threshold does not depend only on the
scale invariance ratio, but also on the scale. The sequepgg andp, are calculated fon=4, 8, 16, 32, and
64, and fork=1 to k=11, andk=9. The corresponding thermal exponent sequengcgis calculated for
n=8 and 16, and fok=1 to k=5, andk=c. Suggestions are made for an experimental test in physical
self-similar structured.51063-651X96)04510-2

PACS numbd(s): 64.60.Ak, 61.43.Hv

[. INTRODUCTION elements randomly distributed on the sites of a lattice, the
percolation transition is the property of these elements to

Phase transitions in fractals are of special interest sinceecome connected in a cluster of infinite size when their

they are structures of noninteger dimension in which theconcentration is large enough. The concentration at which

critical behavior can be compared with the analytical conSuch connections occur is called the percolation threshold.

tinuations obtained from the renormalization group methods, N€ réal space renormalization group has been extensively

Transitions in finite ramification order fractalse., in u_seq to study t.he critical propertigs of.the pe_rcolation _transi—
which any bounded part of the structure can be isolated pyon in regular(i.e., transla‘glonally mvarlamﬂattlg:es, leading .
cutting a finite number of bongikave been extensively stud- 0 the successful caIchann of several. physmal.charac'.(erls-
ied. Gefen, Aharony, and Mandelbidi] proved in this case tics of lacunary materials, such as their dielectric functions

that transitions occur only at zero temperature. Then the S{-.S]' lt=ew Y\t'.o rks, hovx:jever% ha;/el beﬁf‘ r(]jevoted to the; plercolza:c-
erpirski gasket modeltriangular self-invariant fractalhas lon transition in random fractals which are a speciaj class o

been solved exactly for the Potts model, the Ising modelIacunary lattices frequently used as models for disordered
percolation, and electric conductan¢&efen et al. [2]). fnalt?enaals. Siergiski ts(RSO | cl ¢
More recently, Yand4] found an exact expression for the andom Sierpiski carpe are a general class o
partition function of the Ising model on some Siegkncar- regular-random fractaly] g_en,e_f?ted by a segmentau_on pro-
pets with finite ramification order cess like the well known Sierpski carpet, but generalized to
However, few results are known on infinite ramification any scaled mvgrlance ratio andnt?o a randto;n cth0|ceh qf

order fractal lattices, those in which transitions can occur at §ONS€fved subsquares among tiiegenerated at each seg-
nonzero temperature. Gefen, Aharony, and Mandelf8pt mentation step. They are diluted fractz_il lattices quite differ-
found some approximations for the critical exponents inent from the diluted regular square lattice. Indeed many con-

Sierpirski carpets of various fractal dimension, for the ISingf|gurat|ons which occur into the diluted square lattice do not

model, and the conductivity transition, using real spaceeXiSt in a scale invariant fractal structure with the same con-
renorrﬁalization methods. It appears th:’:lt the critical expopentratlon. We thus expect a quite different behavior of the

nents depend not only on the fractal dimension, but also oRercoIation parameters, as already suggested by previous

other geometrical parameters like lacunarity and connectiv\-’vorkS (6] - . . -

ity. Thus the self-invariant lattices do not follow the univer- . Here, the c_rmcal .propertu.as of the percolation tran_s,lthn

sal behavior observed in translationally invariant lattices. into RSC are investigated with a r_eal space 1 enormalization
group method. More generally, this paper brings some new

Interesting questions arise from these worlis:.what is 2~ . A
the role of the fractal dimension in the phase transitiGin? insights ab_out the r.e'a“oﬂ between_ ren(_)rmallzatlon group
pd fractality, both involving scale invariance, but with a

What are the relevant parameters and what are their physicg . ) e
ifferent point of view. From the combination of these two

meaning?(iii) How does the renormalization group work ; . :
g2iil) group related but somewhat different aspects of the scale invariance

when translation invariance is replaced by scale invariancense some interesting percolation properties of scale invariant
This paper is a contribution to these questions. We inves: gp prop

tigate one of the most simple second order phase tran:~:i'[i0|I|.r:aCtal structures W.hiCh should fi_nd experimental applica-
the percolation transition, in a general class of fractals: thdlons as suggested in the conclusion.
random Sierp’iaki ce_lrpets(RSQ (defined laterusing a real Il. THE FRACTAL STRUCTURES
space renormalization group method.

Percolation is a geometrical second order phase transition RSC are built as follows. An initial square is divided into
occurring in random lacunary media. Considering a set ofi? subsquares, onlg of them are conserved at random. This
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FIG. 1. Two examples of random Sierpki carpets(a) RSC(4,11,3) d;=1,73) and(b) RSC(8,45,2) d;=1,83).

random segmentation is repeated on each conserved sub- . THE RENORMALIZATION PROCESS
squares, and so ork times (k is the segmentation step

Such a set is called RSE(q,k). The rigorous mathematical The renormalization process is the one used previously to

calculate the critical parameters of site percolation in regular
. ) . - r]attices[S]. It corresponds to the “one cell approximation”
stepsk. However, it can be observed in most “natural” frac- 114 "1 1 The cells are blocks of four sites. Seven configura-
tals that the physical consequences of scale invariance apPedns are distinguished for each cell, as shown in Fig. 2,
with a small number of segmentation steps. Figure 1 Showéccording to the fact that sites are occupibtick squares
two examples: RS@,11,3 (fractal dimensiomd=1,73) and  o; empty(white squares The renormalization rules are the
RS(A8,45,2 (d¢=1,83). The concentration of occupied sites following: four occupied squaregonfiguration ¢, three oc-

at stepk is (9/n?)* and tends to O for increasing values of cupied squaregconfiguration ¥ and two occupied squares
k. This is a typical consequence of scale invariance, and anly if aligned on an arbitrary choosen directitirere verti-
proof that for such fractals, the concentration cannot be usecal) give an occupied site. All other configuratiofas b, c, d

as a control parameter for the percolation transition. We willgive an empty site in the renormalized lattice.

use insteadd/n?), the concentration at the first segmenta-
tion step,p=q/n? here called the “initial concentration” of
RSC(n,q,k), which seems to be a better control parameter.
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FIG. 2. The seven configurations of a four sites cell. Blackregular lacunary square lattice of 4096 sites, vs the initial concen-

squares are occupied sites and white squares are empty sites. tration p=q/4096.] is the renormalization step.
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(p) (1=<I<kXi=12) vs the initial concentratiop=q/64, for
FIG. 4. Plot of the concentrations sequences of the renormalizeBRSC(8¢,4) (to be compared to numerical results of Fig. 4
lattices vs the initial concentratiqn= q/64, for RSC(8&y,4), show-

ing the four fixed pointsj is the renormalization step. IV. NUMERICAL SIMULATIONS

In the regular lacunary square lattice, successive applica-

In lattices of finite size(finite number of segmentation tions of the renormalization described above on & 64
steps for RSE no infinite percolation cluster can exist. A lattice give a set of six curves as shown in Fig.j3ig the
physical way to analyze the percolation transition is to look'enormalization step All curves intersect at the fixed point
for a continuous path between two arbitrarily choosen oppo©f the renormalization group transformation, corresponding
site sides of the latticd8]. This explains the symmetry !0 Pc (neglecting the finite size effegts .
breaking involved by the distinction between horizontal lines For RSC6,q,k), the same renormalization process is ap-
and vertical lines in the renormalization procésenfigura-  Plied on structures with a scale invariance ratiavhich is a
tions d and e in Fig. 2 power of 2:n=2" in order to get, at each renormalization

In the infinite regular lacunary square lattice, the renor-step, an even number of sites near each edge of the lattice.
malization functione is easily calculated. Let us cgil the ~ The total number of renormalization stepigi. The case
concentration. The fractions of the three percolating dells k=1 corresponds exactly to the percolation problem on the
f, and g, in Fig. 2, obtained after one renormalization step regular square lattice of size.
are, respective|yp2(]_— p)z, p3(]_— p), and p4_ Taking into Results are shown in Fig. 4 for RSC§®4), and Fig. 5 for
account the number of occurrences of each cell: two for eRSC(16q,3). The sequences of concentrations obtained by
four for f, and one for g, the renormalized concentration afteiiterations of the renormalization process are plotted versus
one step, isp(p) =p?(2— p?). The fixed point of this renor- the initial concentrationj(is the renormalization stg¢pThe
malization function is an estimation of the percolationrenormalized concentrations are averaged over 200 randomly
thresholdp, . It is the nontrivial and positive solution of the choosen structures for RSC¢84), and 500 for RSC
equation: p3(2—p?)—-p=0, that is p.=(J5-1)/2 (164,3) to avoid fluctuations effects. It appears that, com-
=0.618 034. This result is a reasonably good approximatioared to the lacunary square lattice, there is not a unique

of the percolation threshold of the square lattice obtained bfixed point, but a sequence of fixed points, depending on the
Monte Carlo simulationsp.=0.59[9]. segmentation step of the fractals. The main result is that the

percolation threshold depends on the scale at which the frac-
tal is observed.
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showing the three fixed points.is the renormalization step. RSC(16¢,3) (to be compared to numerical results of Fig. 5
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FIG. 9. Plot of the concentratiorﬁﬁ‘k of RSC(n,q,k) at the

Three other important observations arise from these nupercolation thresholdp, , of RSC(n,q,k) vs n, for k<1<9.

merical simulations(i) The number of fixed points is exactly
equal to the numbek of segmentation stepsij) each fixed Uo(p)=p* Veo(p), (5.2
point is the intersection of the same numberl of renor-
malization curves; (i) the first k fixed points of
RSC(h,q,k+1) are the same as thk fixed points of

RSC(,q,k), i.e., increasing the number of segmentation ¢i(p):p<k—1)¢i(p)_
steps only adds new fixed points without changing the values
of the preceding ones. At this step, the renormalized structure obtained is a set of

q°®=1) squares, each with the renormalized concentration

&i(p). It can be considered as a setg#* 2 random la-

cunary square lattices of siae, each with concentration
The calculation of the renormalized concentrations afpX ¢;(p). Thei next renormalization steps are then obtained

each step of renormalization can be performed in the followby action of the renormalization functiop, appliedi times

ing way. The important fact is that we have choosen valuesn this concentratiopx ¢;(p) giving

of n such that the size of the lattice is a multiple of two at

V. ANALYTICAL CALCULATIONS

each renormalization stem€2'). As RSChH,q,1) (with P+ (P)=p* PP pi(p)],

only one step of segmentatipis the same structure as a

random lacunary square lattice with si@é with a concen- W2 (P)=p* D[ pi(p)],

tration p=g/n?, RSC(,q,k) can be considered as a set of (5.2

q?®~1 Jacunary square lattices each with concentration e ,
g/n?. As n=2', the renormalization occurs independently
into the g2~ random lacunary square lattices up to the Pai(p)=p* 2 [ pei(p)].

ith step of renormalization, bl successive applications of . _ o
the renormalization functiogb. Let us callg; the jth iterate ~ This sequence af renormalization steps corresponds to the

of the functiong, andy;(p) the function giving the concen- renormalization of one full fractal segmentation step. Then
tration at thejth step of iteration of the renormalization pro- such a sequence is iterated as many times as the total number

cess. Starting with the concentratiaiy(p)=p*=(q/n?), k of segmentation steps of the fractal. Let us define the func-
thei first renormalization steps give the following sequencetion g, j(p) by

of renormalized concentrations:
Ono(P)=p, and gnj+1(P)=pP#i[gn;(P)] (5.3

_ K
Yo(P)=P", the jth iteration (1=j<k) of this sequence of renormal-
ization steps give$ more successive renormalized concen-
ga(p)=p* Pe(p), trations as follows:

TABLE I. The fixed pointsp, , of RSC(n,q,k), for 4<n=64, and fork=2<11 andk=<c.

k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=0

Pak 0.72921 0.77209 0.79439 0.80781 081662 0.82276 0.82723 0.8306 0.8332 0.83525 0.848
Psxk 0.70527 0.73769 0.75406 0.76365 0.7698 0.77399 0.77699 0.77921 0.7809 0.78222 0.7899
ngx 0.68506 0.70878 0.72037 0.72699 0.73116 0.73395 0.73592 0.73736 0.73844 0.73928 0.744
ps2x  0.66859  0.6855 0.6935 0.69797 0.70074 0.70257 0.70384 0.70477 0.70546 0.706 0.708 92

Pesx 0.65555 0.66737 0.6728 0.67577 0.67758 0.67877 0.6796 0.680 19 0.682 79
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TABLE II. The thermal exponenty,, of RSC(,q,k), for However, for such a small value of the finite size effects

n=8, andn=16, andk<2<5 andk=ce. are too strong to allow any comparison with numerical simu-
lations. For higher values of, the degrees of the equations
k=2 k=3 k=4 k=5 k=o are higher than four and the thresholds are calculated nu-

vex 198526 233865 2.6328 2.86904 4.019 49 mz'ci"y- Tab'g ' Clgzta'”s thdek‘ia'“es pf*kk_for 1”<.§%
v 185101 201389 212265 2.19645 243901 (4=N=64) and 2<k<11, andk=ce. For k=1, all fixe

points are equal tgp.=(\/5—1)/2, since finite size effects
are neglected.

o — n(k—j+1) _ Figure 8 shows a plot op,y, and p, versusn for
Yi-uien(P)=P Hnj-a(P)] 2<i<6 (2<n<=64) and 2<k<11 andk=co. It results from
l/’[(jfl)i+2](p):p(k_j+1)¢2[gn (], the calculation ofp, x and p, that both converges towards

p., the percolation threshold of the lacunary square lattice,
whenn—o as expected from physical reasons.
An estimate of the thermal exponeny  which charac-
v (p)=p* Vg, (p) terizes the behavior of the correlation lengtht large scale:
itP)=P T 0n, (P E~(p—p.) " is obtained by linearization of the renormal-

and the final renormalized concentration, obtained aftel?ation function near the fixed points
kxi renormalization steps is v=ln(2)/In(d¢/dp,p:pc). In the fractal case, the result is a

sequence of thermal exponents depending on the segmenta-

(5.9

Ui(P)=di[Gnk-1(P)]. (5.5  tion step ordek (i.e., on the scale
Then, the full renormalization of RS@(q,k) is divided into _ In(2) 5.9
k sequences df renormalization steps. One sequence corre- Vn k= d¢ : (5.9
sponds to the full renormalization of one fractal segmenta- In dp/P=Pn

tion step, which is similar to that af independant regular

square lattices. This result explains the three features obrhe results fom=8 andn=16 are shown in Table II. The
served in the numerical simulations) we clearly obtairk  gequencey,  increases wittk, decreases witim, and con-
successive fixed points, corresponding to the renormalizatioperges, whem— =, towards 1.635 28, the value of the ex-
of each segmentation step of the fractal) the jth fixed  ponenty obtained by renormalization of the infinite regular
point (1=j=k) is the intersection of the+1 following  |acunary square lattice.
functions: ¢ —1yi» ¥-1)i+1 Y(i-1)i+2 - - - ¥ji - Then, each
fixed point involves exactly+ 1 renormalization stepsiii )
the values of the fixed points are not changed whkein-
creases, only new points are added. The main result of this work is that, in self-similar struc-

For comparison to the numerical simulations, Figs. 6 andures, the percolation threshold may depend on the scale of
7 show the curves obtained for the same cases as Figs. 4 aobservation. We suggest an experimental check, in “natu-
5, respectively, i.e., RSC(@4) and RSC(16,,3). Theoreti- ral” self-similar fractals of this scale dependence of the per-
cal and numerical results are in good agreement. Only golation threshold. A classic test of percolation is to check
slight discrepancy shows up, due to finite size effects. Thavhether or not a liquid can go through a porous media. A
function ¢ is indeed calculated in the limit—o, and used simple liquid has no particular scalexcept at the molecular
in the previous examples for finite valuesmf8 and 16. size, which is not our ai but it is possible to give it a scale

The sequence of fixed poings, \ is increasing withk. by putting in suspension particules of a calibrated size. We
Thekth fixed pointp,  can be considered as the percolationexpect that, in a self-invariant structure, and when the size of
threshold of RSQ{,q,k), and is calculated as follows. It is the particules decreases, more and more holes are available,
the real solution between 0 and 1 of the equation so that it is more and more easy to percolate. Then the con-

centration of the fractal at the percolation threshold, and at
P-1i(P) = Y-1)i+1(P) O Gn k-1)(P)=Pe- (5.6)  the corresponding scalge., the corresponding sizshould
also decrease.

When k—e, g, converges towards a limg, and p; This is in good agreement with our theoretical results.
towards a limitp, strictly less than 1, which can be consid- This clearly appears on the plot of the concentrations of RSC
ered as the percolation threshold of R8((,«) (indepen-  at the percolation thresholds versus the scale invariance ratio
dent of any segmentation stép. These percolation thresh- n and the scalé in Fig. 9 (in our case, the occupied sites of
oldsp, are calculated as follows. From the recurrence 5.3 orbur model corresponds to the holes of the porous media

VI. CONCLUSION AND PROSPECTS

dnk, On Obeys the equation The physical applications of such flows of solid particles
immersed in a fluid are numerous in industry, in the fields of
gn(P)=pP¢i[gn(P)] (5.7 filtration, chromatography, clogging, and blood circulation.

for n=2 (i=1), the threshold is exactly calculated ACKNOWLEDGMENTS
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